杏彩登录注册网页版·金属表面处理有哪些?金属怎么抛光?

2024-05-16 10:23:00 1 来源:杏彩登录注册网页 作者:杏彩体育官网注册

>杏彩登录注册网页版·

  表面淬火是指在不改变钢的化学成分及心部组织情况下,利用快速加热将表层奥氏体化后进行淬火以强化零件表面的热处理方法。

  表面热处理的主要方法有火焰淬火和感应加热热处理,常用的热源有氧乙炔或氧丙烷等火焰、感应电流、激光和电子束等。

  激光表面强化主要用于局部强化的零件,如冲裁模、曲轴、凸轮、凸轮轴、花键轴、精密仪器导轨、高速钢刀具、齿轮及内燃机缸套等。

  钢材或钢件在空气-水蒸气或化学药物中加热到适当温度使其表面形成一层蓝色或黑色氧化膜的工艺。也称发黑。

  工件(钢铁或铝、锌件)浸入磷化液(某些酸式磷酸盐为主的溶液),在表面沉积形成一层不溶于水的结晶型磷酸盐转换膜的过程,称之为磷化。

  化学热处理是将工件置于特定介质中加热保温,使介质中活性原子渗入工件表层从而改变工件表层化学成分和组织,进而改变其性能的热处理工艺。

  化学热处理也是获得表硬里韧性能的方法之一。与表面淬火相比,化学热处理不仅改变钢的表层组织,还改变其化学成分。根据渗入的元素不同,化学热处理可分为渗碳、氮化、多元共渗、渗其他元素等。 化学热处理过程包括分解、吸收、扩散三个基本过程。

  表面形变强化指使钢件在常温下发生塑性变形,以提高其表面硬度并产生有利的残余压应力分布的表面强化工艺。工艺简单,成本低廉,是提高钢件抗疲劳能力,延长其使用寿命的重要工艺措施。

  喷丸强化是将大量高速运动的弹丸喷射到零件表面上,犹如无数个小锤锤击金属表面,使零件表层和次表层发生一定的塑性变形而实现强化的一种技术。

  利用自由旋转的淬火钢滚子对钢件的已加工表面进行滚压,使之产生塑性变形,压平钢件表面的粗糙凸峰,形成有利的残余压应力,从而提高工件的耐磨性和抗疲劳能力。

  表面胀光是在常温下将直径稍大于孔径的钢球或其他形状的胀光工具挤过工件已加工的内孔,以获得准确,光洁和强化的表面。

  将金属粉末加热至熔化或半熔化状态,用高压气流使其雾化并喷射于工件表面形成涂层的工艺称为热喷涂。

  在基体材料的表面覆上一层或多层金属镀层,可以显著改善其耐磨性、耐蚀性和耐热性,或获得其他特殊性能。有电镀、化学镀、复合镀、渗镀、热浸镀、真空蒸镀、喷镀、离子镀、溅射等方法。

  气相沉积技术是指将含有沉积元素的气相物质,通过物理或化学的方法沉积在材料表面形成薄膜的一种新型镀膜技术。

  根据沉积过程的原理不同,气相沉积技术可分为物理气相沉积(PVD)和化学气相沉积(CVD)两大类。

  物理气相沉积是指在真空条件下,用物理的方法,使材料汽化成原子、分子或电离成离子,并通过气相过程,在材料表面沉积一层薄膜的技术。

  物理气相沉积具有适用的基体材料和膜层材料广泛;工艺简单、省材料、无污染;获得的膜层膜基附着力强、膜层厚度均匀、致密、少等优点。

  广泛用于机械、航空航天、电子、光学和轻工业等领域制备耐磨、耐蚀、耐热、导电、绝缘、光学、磁性、压电、滑润、超导等薄膜。

  化学气相沉积是指在一定温度下,混合气体与基体表面相互作用而在基体表面形成金属或化合物薄膜的方法。

  由于化学气相沉积膜层具有良好的耐磨性、耐蚀性、耐热性及电学、光学等特殊性能,已被广泛用于机械制造、航空航天、交通运输、煤化工等工业领域。

  抛光是对零件表面进行修饰的一种光整加工方法,一般只能得到光滑表面,不能提高甚至不能保持原有的加工精度,随预加工状况不同,抛光后的Ra值可达1.6~0.008 mm。

  将金属零件浸入特制的化学溶液中,利用金属表面凸起部位比凹洼部位溶解速度快的现象实现零件表面的抛光。

  电化学抛光与化学抛光类似,不同点是还要通以直流电,工件接阳报,产生阳极溶解,也是利用金属表面凸起部位比凹洼部位溶解速度快的现象进行抛光的。

  常见涂装工艺有:刷涂、自动浸涂、手工喷涂(含高压无气喷涂)、淋涂、幕帘淋涂、流化床涂覆、辊涂、静电喷涂等。

  现今,金属表面处理工艺一般有喷涂、电镀、拉丝、喷砂、阳极氧化、钝化、氧化、抛光等等。其中,对金属光泽度影响最大的是抛光工艺,现在的抛光工艺有很多,包括手动打磨抛光、震动研磨抛光、磁力抛光、电解抛光、化学抛光等等。这些抛光方法,需要用到砂纸 、抛光膏、震动研磨机、抛光剂等产品。

  电解抛光工艺,阳极是被抛光工件,不活泼金属作为阴极,两极放置于电解槽内,通直流电,阳极的被抛光工件溶解,从而达到去除工件表面不平整度,从而,达到较好光亮度。

  化学抛光工艺,常用化学抛光剂对金属表面的凹凸区域选择性溶解,消磨划痕、侵蚀整平,达到表面光亮的作用。

  1. 电镀:通过电解反应 在金属表面沉积一层与基体不同的金属或合金。电镀可以改变物品的颜色,提供良好的防腐性能,增加表面硬度,减少摩擦等。

  2. 阳极氧化:这是一种用于铝及其合金的处理方法,能生成一层厚度可控、硬度高、耐磨、耐腐蚀的氧化膜。

  1. 手动抛光:在工件表面反复打磨,使用的磨料从粗到细,最后打磨至工件表面平滑无痕。这需要一定的手工技巧和耐心。

  3. 电解抛光:在特定的电解液中,利用电解原理,使金属表面自然溶解,从而达到抛光目的。该方法常用于不饱和的不锈钢表面。

  长期以来,激光技术以焊接、切割和打标的广泛使用为人们所知,这两年随着激光清洗的逐渐普及,激光表面处理的概念才越来越多地成为人们关注的焦点,出现在人们的脑海中。激光以非接触方式加工,高柔性、高速无噪声、热影响区小无损基材,无耗材且环保低碳。

  激光表面处理除了激光清洗之外,其实还有非常多的应用类别,例如激光抛光、激光熔覆、激光淬火等等。这些方法被用在改变材料表面的特定物理化学性能上,比如使表面加工成具有疏水性的功能,或者用激光脉冲产生直径约为10微米,深度仅为几微米小凹陷,以此来增加粗糙度、增强表面附着力等等。

  激光淬火是加工高应力复杂部件的解决方案之一,可以令凸轮轴和折弯工具等磨损较高的零部件承受更高的应力,延长寿命。

  它的原理是通过将含碳工件的表皮被加热到略低于熔化温度(900 -1400°C,40%的辐照功率被吸收),使金属晶格中的碳原子重新排列(奥氏体化),而后激光束沿进给方向稳定加热表面,随着激光束的移动周围的材料快速冷却,金属晶格无法恢复其原始形式,从而产生马氏体,使硬度显着增加。

  激光硬化达成的碳钢外层硬化深度通常为0.1-1.5mm,在某些材料上可以做到2.5mm或更大。相较于传统的淬火方式它的优点在于:

  1. 目标热输入仅限于局部区域,因此在加工过程中几乎没有组件翘曲。返工成本减少,甚至可完全消除;

  2. 在复杂的几何型面和精密的部件也能硬化,可以实现传统淬火方法无法淬火的局部受限的功能表面精确硬化;

  3. 无失真。传统的硬化过程中由于更高的能量输入和淬火而产生变形,但在激光硬化过程中,由于激光技术和温度控制,可以精确控制热量输入。组件几乎保持其原始状态;

  激光毛化是金属材料表面改性的工艺手段之一。在结构化过程中,激光在层或基材中创建规则排列的几何形状,以便有针对性地改变技术特性并开发新功能。作用过程大致是使用激光辐射(通常是短脉冲激光)以可重复的方式在表面上生成规则排列的几何形状。激光束以受控方式熔化材料,并通过适当的工艺管理固化成确定的结构。

  例如疏水性表面结构可以让水从表面流掉。用超短脉冲激光器在表面创造亚微米结构就可以实现这个特性,并可以通过改变激光参数对所要创造的结构进行精确控制。相反的效果,例如亲水性表面,同样可以实现;

  汽车面板要涂漆,必须让薄板表面均匀分布“微坑”以增强漆料的附着力,用每秒数千至上万次的脉冲激光束聚焦后入射到轧辊表面,在聚焦点处轧辊表面形成微小溶池,同时对微小溶池侧吹,让溶池中的溶融物按指定要求尽量堆积到溶池边缘形成圆弧形凸台,这些小凸台和微坑既可提升材料表面的粗糙度增加漆料的附着力,又可以提高材料的表面硬度,延长使用寿命。

  某些特性是由激光结构产生的,如一些金属材料的摩擦特性或导电导热性。此外,激光结构化也增加了工件的粘合强度和使用寿命。

  相较传统方式,表面激光结构化更加环保,不需要额外的喷砂剂或化学物质;可重复且精确,激光实现了精确到微米的受控结构,并且非常容易复制;低维护,与快速磨损的机械工具相比,激光是非接触式的,因此绝对无磨损;无需后处理,激光加工的部件上不会留下熔体或其他加工残留物。

  03.激光炫彩表面处理激光回火常用在激光炫彩表面处理上,又称做激光彩色打标。工艺原理是激光加热材料时,将金属局部加热到略低于其熔点,在适当的工艺参数下,此时栅极的结构会发生变化;在工件表面会形成氧化层,这层薄膜在光的照射下,入射光干涉使各种回火色在这时出现,表面生成的这一层幻彩的打标层,随着不用的观察角度而变化,标记的图案也会变幻出各种不同的颜色。

  这些颜色在高达约 200 °C 时保持温度稳定。温度更高时,栅极会恢复其初始状态—打标消失。表面质量将完整保留。在防伪的应用上具有高度的安全性和可追溯性。近年来已成熟运用于医疗技术领域,除了通过超短脉冲激光器进行全新的黑色打标外,还非常适合进行产品标识,从而根据 UDI 指令实现唯一可追溯性。

  是一种适合金属和金属陶瓷混合材料的增材制造工艺。借此可以打造或修改 3D 几何形状。使用该生产方法,激光也可以进行修复或镀膜。因此在航空航天领域,增材制造被用于修复涡轮叶片。

  在工具和模具制造领域,可以修复破裂或磨损的边缘和造形功能表面,或者甚至是在局部加装装甲。为了防止磨损和腐蚀,在能源技术或石油化学领域,为轴承位置、滚子或液压部件镀膜。而且在汽车制造领域也使用增材制造。在此对大量部件进行改良。

  在常规的激光金属熔覆中,激光束先局部加热工件,然后形成熔池。然后从激光加工头的喷嘴将精细金属粉直接喷入熔池。在高速激光金属熔覆过程中,粉末颗粒在基底表面上方就已经几乎加热到了熔化温度。因此,熔化粉末颗粒只需要较少的时间。

  效果:明显提升流程速度。由于热效应更小,通过高速激光金属熔覆也可以为对热非常敏感的材料,如铝合金和铸铁合金,进行涂层。通过 HS-LMD 工艺可以在旋转对称表面上形成很高的表面速率,最高达 1500 cm²/min。同时实现高达每分钟数百米的进给速度。

  通过激光粉末激光金属熔覆快速、轻松地修复昂贵的部件或模具。大大小小的损伤都可以迅速修复,且几乎无痕。也可以更改设计。从而节省时间、能源和材料。尤其是针对昂贵的金属,如镍或钛,相当值得。典型的应用示例有涡轮叶片、各种活塞、阀门、轴或模具。

  数千个微型激光器(VCSEL)被安装在了单块芯片上。每个发射器上均装有 56 块这样的芯片,而 一个模块则由若干个发射器构成。矩形辐射区可包含数百万个微型激光器并且可输出数千瓦的红外激光功率。

  VCSEL 通过大面积的定向矩形光束横截面可生成辐射强度为100 W/cm² 的近红外光束。原则上,这种技术适用于所有对表面和温度控制精准性要求极其严苛的工业流程。

  激光热处理模块尤为适合精度要求严苛且灵活的大面积加热应用场景。相较于传统的加热方法,这种新型加热工艺拥有更高的灵活性、精度和成本节约性。

  该技术可用于密封袋式电池片,防止铝箔起。